skip to main content


Search for: All records

Creators/Authors contains: "Shahrasbi, Amirbehshad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chakrabarti, Amit ; Swamy, Chaitanya (Ed.)
    We analyze the sketching approximability of constraint satisfaction problems on Boolean domains, where the constraints are balanced linear threshold functions applied to literals. In particular, we explore the approximability of monarchy-like functions where the value of the function is determined by a weighted combination of the vote of the first variable (the president) and the sum of the votes of all remaining variables. The pure version of this function is when the president can only be overruled by when all remaining variables agree. For every k ≥ 5, we show that CSPs where the underlying predicate is a pure monarchy function on k variables have no non-trivial sketching approximation algorithm in o(√n) space. We also show infinitely many weaker monarchy functions for which CSPs using such constraints are non-trivially approximable by O(log(n)) space sketching algorithms. Moreover, we give the first example of sketching approximable asymmetric Boolean CSPs. Our results work within the framework of Chou, Golovnev, Sudan, and Velusamy (FOCS 2021) that characterizes the sketching approximability of all CSPs. Their framework can be applied naturally to get a computer-aided analysis of the approximability of any specific constraint satisfaction problem. The novelty of our work is in using their work to get an analysis that applies to infinitely many problems simultaneously. 
    more » « less
  2. We introduce synchronization strings , which provide a novel way to efficiently deal with synchronization errors , i.e., insertions and deletions. Synchronization errors are strictly more general and much harder to cope with than more commonly considered Hamming-type errors , i.e., symbol substitutions and erasures. For every ε > 0, synchronization strings allow us to index a sequence with an ε -O(1) -size alphabet, such that one can efficiently transform k synchronization errors into (1 + ε)k Hamming-type errors . This powerful new technique has many applications. In this article, we focus on designing insdel codes , i.e., error correcting block codes (ECCs) for insertion-deletion channels. While ECCs for both Hamming-type errors and synchronization errors have been intensely studied, the latter has largely resisted progress. As Mitzenmacher puts it in his 2009 survey [30]: “ Channels with synchronization errors...are simply not adequately understood by current theory. Given the near-complete knowledge, we have for channels with erasures and errors...our lack of understanding about channels with synchronization errors is truly remarkable. ” Indeed, it took until 1999 for the first insdel codes with constant rate, constant distance, and constant alphabet size to be constructed and only since 2016 are there constructions of constant rate insdel codes for asymptotically large noise rates. Even in the asymptotically large or small noise regimes, these codes are polynomially far from the optimal rate-distance tradeoff. This makes the understanding of insdel codes up to this work equivalent to what was known for regular ECCs after Forney introduced concatenated codes in his doctoral thesis 50 years ago. A straightforward application of our synchronization strings-based indexing method gives a simple black-box construction that transforms any ECC into an equally efficient insdel code with only a small increase in the alphabet size. This instantly transfers much of the highly developed understanding for regular ECCs into the realm of insdel codes. Most notably, for the complete noise spectrum, we obtain efficient “near-MDS” insdel codes, which get arbitrarily close to the optimal rate-distance tradeoff given by the Singleton bound. In particular, for any δ ∈ (0,1) and ε > 0, we give a family of insdel codes achieving a rate of 1 - δ - ε over a constant-size alphabet that efficiently corrects a δ fraction of insertions or deletions. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. We introduce fast-decodable indexing schemes for edit distance which can be used to speed up edit distance computations to near-linear time if one of the strings is indexed by an indexing string I. In particular, for every length n and every ε >0, one can in near linear time construct a string I ∈ Σ′n with |Σ′| = Oε(1), such that, indexing any string S ∈ Σn, symbol-by-symbol, with I results in a string S′ ∈ Σ″n where Σ″ = Σ × Σ′ for which edit distance computations are easy, i.e., one can compute a (1+ε)-approximation of the edit distance between S′ and any other string in O(n (log n)) time. Our indexing schemes can be used to improve the decoding complexity of state-of-the-art error correcting codes for insertions and deletions. In particular, they lead to near-linear time decoding algorithms for the insertion-deletion codes of [Haeupler, Shahrasbi; STOC ‘17] and faster decoding algorithms for list-decodable insertion-deletion codes of [Haeupler, Shahrasbi, Sudan; ICALP ‘18]. Interestingly, the latter codes are a crucial ingredient in the construction of fast-decodable indexing schemes. 
    more » « less